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Unsteady flow near a moving cylinder 

By A. P. DOWLING 
Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 lPZ, UK 

(Received 1 1  June 1992 and in revised form 10 June 1994) 

General representations are derived for both the velocity potential and the surface 
pressure fluctuations induced by an arbitrary distribution of vorticity near a 
manoeuvring cylinder. The cylinder is inextensible and in unsteady motion. Its axis 
may be slightly curved, with radius of curvature large in comparison with the cylinder 
radius. 

Two model problems are considered in detail to investigate the effect of lateral 
displacements of a cylinder with an established boundary layer. The boundary layer on 
the flexible cylinder is found to be shed once the lateral displacement of the cylinder 
axis exceeds the boundary-layer thickness. The unsteady pressures generated by this 
vortex shedding are investigated. 

1. Introduction 
The forces acting on slender fish and long, flexible cylinders have been studied 

extensively (see, for example, Taylor 1952; Lighthill 1960 and Paidoussis 1973). One 
particular application is to towed instrumentation packages in the form of long flexible 
cylinders which are used to detect and analyse acoustic signals in the ocean (Kennedy 
1980; Dowling 1988). The cylinder is usually neutrally buoyant and contains an axially 
distributed sonar array. This cylinder is sometimes referred to as an acoustic ‘streamer’ 
or ‘array’. Under constant towing conditions, the towed array is straight and parallel. 
However, changes in ship heading and speed cause transverse motion of the array, 
deforming it from a straight cylinder. Array deflection can also be produced by ocean 
currents. It may be possible to extend the operating range of a towed array into this 
deformed case, but to do so more details of the unsteady flow near a manoeuvring 
cylinder are needed. 

Consider a cylinder in motion with an arbitrary unsteady velocity, U(s, t ) ,  where 
V(s, t )  is a gradually varying function of arclength s along the cylinder. This leads to 
deflections of the cylinder, with an axial lengthscale much larger than the cylinder 
radius a. It is convenient to decompose the fluid velocity due to the cylinder motion 
into the sum of an irrotational component and that induced by vorticity. 

The irrotational flow produced by an arbitrary unsteady motion of a cylinder with 
a slightly curved axis is investigated in $2. The method of matched asymptotic 
expansions is used to determine the near-field velocity potential correct to order u/Rc,  
where R, is the radius of curvature of the cylinder axis. 

The effect of vorticity is considered in $3. Mohring (1978) introduced a vector Green 
function to obtain a convenient description of the distant sound generated by vorticity. 
We apply the same idea to the incompressible near field induced by vorticity. It enables 
us to determine a general expression for the velocity potential produced outside the 
vortical region by an arbitrary three-dimensional distribution of vorticity near a 
moving cylinder. This extends the classical result for the velocity potential due to a line 
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vortex parallel to a cylinder axis (see for example Batchelor 1967, p. 423) to three 
dimensions. Having determined the velocity potential, it is straightforward to calculate 
other flow parameters, like velocity and pressure. 

The pressure field generated on the cylinder is of particular interest for the towed 
array geometry. Embedded transducers within the array measure the circumferentially 
averaged surface pressure. This information is then used to evaluate the axial- 
wavenumber decomposition of the measured pressure. We use our expression for the 
velocity potential to deduce a representation for the axial-wavenumber decomposition 
of the circumferentially averaged surface pressure, in terms of a weighted integral over 
the instantaneous vorticity fields (see (3.30)). Further simplification is possible when 
the vorticity is linear, so that it convects with the irrotational fluid velocity induced by 
the cylinder motion. 

In $4 we illustrate how this representation theorem can be used by considering two 
simplified model problems. We wish to investigate the unsteady pressures generated 
when a cylinder with an established boundary layer undergoes lateral displacement. 
Only a very simple model of an element of boundary-layer turbulence is considered. It 
is modelled by a vortex ring of linear strength, which is initially coaxial with the 
cylinder. We find that transverse cylinder motion significantly distorts the vortex ring, 
and that vorticity is essentially shed from the cylinder once the displacement of the axis 
of the cylinder exceeds the initial ring diameter. This means that the boundary layer is 
continually being shed from a flexible cylinder undergoing lateral displacements. 
Whereas the boundary layer on a straight cylinder aligned with the flow grows with 
distance from its leading edge, we can expect the boundary layer on a flexible cylinder 
to be shed once the lateral displacement of the cylinder axis exceeds the boundary-layer 
thickness. Hence along a flexible cylinder the boundary layer will repeatedly grow and 
then be shed. The results of $ 3  are used to calculate the axial-wavenumber 
decomposition of the circumferentially averaged surface pressure induced by this 
shedding process. 

2. Irrotational flow near a slightly curved cylinder 
Consider the inextensible flexible cylinder illustrated in figure 1. We denote the 

position vector of the cylinder axis at arclength s and time t by x,(s, t). The unit vector 
in the direction of the cylinder axis i, is then given by i = ax,/asl, while the cylinder 
velocity, U(s, t), is denoted by U = ax,/atl,. The inextensibility of the cylinder imposes 
a constraint on its velocity, which (see Batchelor 1967, p. 132) can be expressed as 

i.au/as = 0. (2.1) 

The instantaneous curvature of the cylinder axis, p(s, t), is defined by p(s, t) = ai/asl,. 
Since ŝ  is a unit vector 

1pI-l is equal to the local radius of curvature R,. We are interested in cylinder motion 
such that the cylinder length, R, and the arclength over which V(s, t) varies are all large 
in comparison with the cylinder radius a, and we introduce a small parameter E which 
is order a/R,. 

velocity potential #(x, t) .  Since the Mach number of the cylinder motion is low, the 
The irrotational flow induced by the cylinder motion may be described by a 
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Cylinder with a slightly 
curved axis 

-1. 

FIGURE 1. The geometry of the cylinder. 

flow can be considered to be incompressible and the velocity potential $(x,  t) at a 
position x therefore satisfies 

with boundary conditions 
VZ$ = 0, 

and 

n.V$ = n .  U on the cylinder 

4 + w x l - 2 )  
for 1x1 large in comparison with the cylinder length. Since the cylinder has no 
circulation, 9 is to be single-valued. 

The free-space Green function for Laplace's equation can be used to write down a 
global solution for $(x, t) in terms of 4 on Z(t), the surface of the cylinder: 

We will solve this integral equation for $ by investigating the form of $(x,t)  at 
positions x which are near the cylinder on the scale of the radius of curvature. 

For a position x in the near field close to the cylinder, it is convenient to introduce 
two parameters, S(x,t) and X(x,t),  which are illustrated in figure 2. S(x,t) is the 
arclength position of the base of a perpendicular from the cylinder axis to x, i.e. 
S(x, t )  is a solution of 

(2.7) 

X(x,  t) ,  the vector from x,(S, t) to x, is perpendicular to the cylinder axis at x,(S, t): 

ax 
as 

(x  - X,(S, t)) - -2 (S,  t )  = 0. 

x = X+X,(S, t). (2.8) 

Equation (2.7) has a unique solution for R = 1x1 << R, = as-' and ensures that 

as required. 
x-qs, t )  = 0 (2.9) 

In this near field R 4 we seek an expansion of the velocity potential in the form 

$(& 0 = 4 0 k  0 + 4 ( x ,  0 + O(E2), (2.10) 

where $o and are of order unity. This expansion is to satisfy Laplace's equation and 
the boundary condition on the surface of the cylinder in (2.4). Since this is a near-field 
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FIGURE 2. The definition of S and X: here x,(S, t )  is the base of a perpendicular, X, from the 
cylinder axis to x. 

solution, we cannot apply the distant boundary condition (2.5). Instead we note that 
it must match the global solution in (2.6) for a < R -g ae-'. 

To lowest order in e, the near-field velocity potential at x is that for a straight 
cylinder with its axis in the direction i(S, t ) :  

R = and f? is an azithumal angle measured around the cylinder axis. The first term 
on the right-hand side of (2.11) is a solution of Laplace's equation that satisfies the 
boundary condition (2.4). The remaining terms are the general solution of Laplace's 
equation with zero normal derivative on R = a. The coefficients A,, B, are to be 
determined by matching the form for $,,(x, t )  in (2.11) to the general representation in 
(2.6). 

A position y on the surface of the cylinder can be expressed in the form y = 
x,(S,, t )  +nu. Hence, for R % a, the integrand in (2.6) simplifies and 

where d = x-xc(Sy, t ) .  To evaluate this integral to zeroth order in B ,  we substitute 
for $,, on the cylinder surface from (2.11). Integration is then straightforward for 
a Q R < ae-l and gives 

(2.13) 

This is to match to the near-field form in (2.11). Since the near-field form has a term 
which grows in R like (A, cos no + B, sin no) Rn/an if either A ,  or B, is non-zero, we 
must have A ,  = B, = 0 for all n 2 1. Hence, 

for R < a6-l. 
u- x 
R2 $()(x, 2 )  = -uz- (2.14) 

To lowest order in 6 ,  the near-field velocity potential is just that due to a straight 
cylinder with velocity U(S, t )  and its axis in the direction $(S, t) .  We now wish to go 
on to determine an expression for the near-field velocity potential which is correct to 
order e. 
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Substitution of (2.10) into Laplace's equation (2.3) and the boundary condition (2.4) 
leads to 

together with 
en-V$, = n. U-n.Vq5,+O(e2) on the cylinder. (2.16) 

The derivatives of 4, need to be evaluated correct to order E before we can proceed any 
further. Differentiation of (2.7) with respect to xj shows that 

EV2$, = - V2$, + O(E2), (2.15) 

It then follows from (2.8) that 

Differentiation of (2.14) gives 

(2.17) 

(2.18) 

(2.19) 

After substituting for the derivatives of S and X from (2.17) and (2.18) respectively and 
expanding the derivative a(X,/R2)/aXk, this becomes 

after the orthogonality condition (2.9) has been used. 

the boundary condition (2.16) for $, simplifies to 
Hence on the surface of the cylinder, where R = a and n = X / a ,  n.V$, = n- U and 

m.Vq5, = O(E2). (2.21) 

Differentiating (2.20) with respect to xi,  and use of the inextensibility condition (2.1) 
and the orthogonality conditions (2.2) and (2.9), lead to 

2a2 a2 
V2$, = - - ( U - x ) ( p * x ) + -  R4 R2 U.p+O(s2). 

The problem for $1 therefore consists of finding the solution to 

2a2 a2 
EV2(h1 = +u.x)@.x)-2 R U.p, 

(2.22) 

(2.23) 

correct to order E ,  which satisfies the boundary condition (2.21). 
We note that - F ( U - X ) ( p . X ) / R 2  is a particular integral of (2.23), and that the 

general solution that satisfies the boundary condition (2.21) can be expressed in the 
form 

03 e$,(x,t) = - - R 2 ( U - x ) ( p - X ) + ~ C o +  a2 E ( C , c o s n B + D , s i n n B ) ( ~ + ~ ) .  (2.24) 
n-1 

The coefficients C ,  and D ,  are to be determined by matching to the large-R/a form of 
the general representation in (2.12). 
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the surface integrals can be evaluated correct to U(E)  for a 4 R 4 a€-', to give 
After substituting for q5,, and from (2.14) and (2.24) into the integrand in (2.12), 

a2 a2 a2 
R 2R 2 q50(X,t)+Eq51(X,t) = -~u.x---,(u.x)@.x)+-u~p 

+s(Cl cos 8 + D ,  sin R 

Since this is to match the near-field forms in (2.14) and (2.24), we must have do = 
:a2 U - p  and C, = D ,  = 0 for n 2 1. 

Collecting together q50 and dl, from (2.14) and (2.24) respectively, gives the velocity 
potential correct to order E:  

U2 U2  a2 
R 2 

$(& t )  = -7 u. X-=( u. x) (p. x) + - u. p + O(E2). (2.26) 

The local fluid velocity, u(x, t), follows from (2.20) and the derivative of (2.26) 

u-(u.i)i - 2 ( u . x ) q  - a z I I -  aux i UZ(U.X)P  
R4 as ~2 2R2 

u(x, t )  = --a2 

The velocity field in (2.27) describes the irrotational flow due to the motion of a 
cylinder with a slightly curved axis. This result is used in $4. The complete velocity field 
can be decomposed into the sum of an irrotational component, which has been 
determined in this section, and a term induced by vorticity, which is investigated in $3. 

3. The pressure field generated by vorticity near the cylinder 
The two-dimensional velocity potential due to a line vortex parallel to a cylinder axis 

is well known (see for example Batchelor 1967, p. 423). We seek to generalize that 
result to determine the three-dimensional velocity potential generated by an arbitrary 
distribution of vorticity near a moving cylinder. This will subsequently be used to 
calculate the induced pressure field. 

At positions x close to both the vorticity and the cylinder, the cylinder may be 
considered as straight and moving with a uniform velocity, U(t) say, if we neglect terms 
of order E. It is convenient to view this flow from an accelerating reference frame in 
which the cylinder is locally at rest and there is a flow - U from infinity. Let 

x' = x - 1  ' ( 7 )  d7, v' = v -  U. 

Outside the regions of vorticity we can introduce a potential #'(x', t )  for v', the fluid 
velocity in the moving reference frame, and write 

v' = V4'. (3.2) 

We seek to find an expression for $'(x', t) in terms of the cylinder velocity U(t) and the 
vorticity w. The flows of interest are of high Reynolds number and the convection of 
vorticity is more significant than its diffusion. It is therefore appropriate to use an 
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inviscid form of the momentum equation. We find B(x’,t) to be a convenient 
dependent variable : 

where p is the pressure and p the density. The momentum equation can then be written 
in the form 

B(x’, t) = ( p  -p,)/p + !jd2 - tU + U -  x’, (3.3) 

The variable B(x’, t )  is convenient because, although it is defined everywhere, outside 
the regions of vorticity 

B = -%Ix:  (3 - 5 )  

a result which can be readily seen from a comparison of (3.2) and (3.4). We seek a 
representation theorem for B(x’, t) in terms of the cylinder velocity and the vorticity. 
The velocity potential will then follow after integration with respect to time. 

First, note that a vorticity equation can be derived by taking the curl of (3.4) to give 

It is shown in Appendix A how the velocity field u’ can be expressed entirely in terms 
of the cylinder velocity and the vorticity. This is analogous to the work of Lighthill 
(1956) for vorticity near a rigid sphere. For a specific cylinder velocity, (3.6) can be 
integrated with respect to time to determine the development of an initial distribution 
of vorticity. We therefore consider the vorticity field to be prescribed. 

It follows from the divergence of (3.4) and the continuity equation that 

V2B = -div ( o x  0’). (3.7) 

This is to be solved subject to the boundary condition that the surface of the cylinder 
is impenetrable, so that 

The cylinder is at rest in the x’-frame and, after differentiation of (3.8) with respect to 
time, (3.4) shows that 

It is evident from the definition of B in (3.3) that far from the cylinder 

n.v’=O on Z. (3.8) 

n-VB = -n.(w x v’) on Z. (3.9) 

B+U-x‘ as x‘+oo. (3.10) 

Equation (3.7) together with the boundary conditions (3.9) and (3.10) completely 
define B(x’, t).  We will solve these equations to find B(x’, t )  (and hence qY(x’, t)) in 
terms of the vorticity, w(x’, t). It is convenient to decompose B(x’, t )  into two parts by 
writing 

B(x’, t )  = BJx’, t )  + B,(x’, t),  (3.1 1) 

where V2B, = 0, with n-VB, = 0 on Z, B,+U-x‘ as x’+m (3.12) 

and 

V2B,=-div(wxv‘), with n.VB,=--n.(oxv’) on Z, B,+O as x’+oo. 
(3.13) 
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B,(x’, t) is the contribution to B(x’, t )  from the cylinder motion and its solution can be 
written down immediately : 

B,(x’, t )  = U .  x’ + UR a2 /R ,  (3.14) 

where (xi, R, 8) are cylindrical polar coordinates of the position vector x’, the 1- 
direction being taken parallel to the local cylinder axis. The suffix R denotes the radial 
component, i.e. U, = V, cos 8+ V, sin 8. The velocity potential q5: can be found from 
an integration of (3.5) and is given by 

&(x’, t )  = - U.x’-  U’a2/R. (3.15) 

B,(x’,t) is the contribution to B(x’,t) from the vorticity field. It can be determined 
most conveniently by introducing a Green function G(y’ I x’) which satisfies 

V;,G=S(y’-x’), with n-VG=O on Z, G+O as y’+co. (3.16) 

After a standard application of Green’s theorem, (3.13) and (3.16) lead to 

B,(x’, t )  = (0 x u’). V,,, G d3y’. I (3.17) 

We now make use of the technique introduced by Mohring (1978) to rewrite this 
equation in a way that expresses B,(x’, t) in terms of vorticity alone. 

We restrict (x’, t) to positions for which the vorticity is zero. Then B(x’, t) = 
-aq5’/at(, as shown in (3.5). Moreover V;:G = 0 at all non-zero values of the 
integrand in (3.17) and so a vector Green function G(y’ I x’) can be introduced, defined 

curl G = grad G for y’ =k x’. (3.18) 
by 

G is calculated in Appendix B. 
Rewriting (3.17) in terms of this vector Green function gives 

-=Ix, aq5: = I(o x u’).curl G d3y’, 

which after integration by parts becomes 

= -/curl (o x u’) .  Gd3y’ 

The vorticity equation (3.6) shows that this reduces to 

After integration with respect to time, we finally obtain 

,. 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

Changes in so. G d3y’ generate fluctuations in the velocity potential. Now the vector 
Green function G(y’1x’) is independent of time, while the vorticity satisfies a 



Unsteady flow near a moving cylinder 37 1 

conservation relationship that o. dS is constant for any material surface S. Equation 
(3.22) therefore shows that both vortex stretching and the convection of vorticity 
across contours of constant G produce fluctuations in velocity potential. 

Substitution for G in (3.22) from Appendix B equation (B 6 )  leads to 

x eik(Y;-x;)+in(*-$) dk day’, (3.23) 

for R < B. In (3.23) K = Ikl and Z,(z) and K,(z) are modified Bessel functions. 
A dot denotes differentiation with respect to the argument. (y i ,  B, $) and 
(q, w,, ut) are the cylindrical polar coordinates of y’ and o respectively and 

The total velocity potential is given by the addition of (3.15) and (3.23): 

$w’, 4 = $l(x’, t )  + d:(x’, 9 

eik(!/-z;)+i?l(k-8) dk d3 y’ for R < B. (3.25) 

This is a main result of this paper. It extends the well-known formula for the velocity 
potential due to a line vortex parallel to a cylinder axis to an arbitrary, unsteady three- 
dimensional distribution of vorticity near a moving cylinder. This velocity potential 
gives a convenient description of the flow field, which we will use to determine the 
pressure. 

Equation (3.3) shows how the pressure field can be expressed entirely in terms of u’ 
and B. We note from (3.2) and (3.5) that these can be readily calculated by 
differentiation of (3.25) with respect to x’ and - t  respectively. We are particularly 
interested in the pressure perturbation on the surface of the cylinder and substitution 
for D’ and B into (3.3) yields 

(P --Pa) (XI, a, 8) 
P 

V, is the azimuthal velocity, U, = - V, sin 8+ V, cos 8. Vorticity at the cylinder surface 
has been neglected in deriving this expression. We are considering a cylinder whose 
motion, over a prolonged period, had led to significant vorticity away from the surface. 
Equation (3.26) describes the surface pressures induced by this vorticity. The vorticity 
has been assumed to be weak so that the square of vorticity terms can be neglected in 
the calculation of pressure. 
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Embedded transducers within a towed array are used to measure an incoming sound 
field. They also respond to the flow noise due to vorticity near the cylinder and the 
characteristics of this noise can be determined from (3.26). The embedded transducers 
actually measure the circumferentially averaged surface pressure. This information is 
then used to evaluate the axial-wavenumber decomposition of the measured pressure. 
We are therefore particularly interested in 

( p - p m )  (xi, a, 6)  elkx; d6 dx; for Ikl R, 4 1. (3.27) 
27c 

Integration of (3.26) leads to 

(h@ + ikV, we) eikg; d3y‘ + - P s( w, U@ Q, - iw!b ‘U ’.) eikg; d3,,f 
XU ku 

(3.28) 

The vorticity equation (3.6) can be used to replace &+, by a(o x v’)l/aa- 
for IklR, % 1 .  

a(w x v’)Jay; and after integration by parts we obtain 

The measured wavenumber decomposition of the surface pressure is predicted to 
depend only on the instantaneous velocity and vorticity fields. We determined in 
Appendix A equation (A 12) how the velocity can be expressed in terms of the 
instantaneous vorticity and cylinder velocity. Equation (3.29) therefore provides a 
means of calculating the surface pressure for a particular distribution of vorticity. 

The wavenumbers of interest are small in comparison with u-l. Provided the 
vorticity is concentrated near the cylinder at positions such that Ikl u 4 1, equation 
(3.29) simplifies. For small positive ku the functions K, in the definitions of Po, PI and 
Q, in (3.24) may be expanded by their small-argument asymptotic forms to give 

{ - wl(u; + (2 - x k ~ )  U@) + o, ika (In (iku) + y) u; 
2x 

eiky’ 

U 
+ w+(ui + V, - iku (In (iku) + y) u i  + i(x - 2ku) Uu)} - d3y’, (3.30) 

where y is Euler’s constant and kR, 4 1 4 ku. 
Equation (3.30) describes the wavenumber decomposition of the circumferentially 

averaged pressure in terms of the vorticity and velocity fields. Chase & Noiseux (1982) 
and Dhanak (1988) derived an expression for the pressure in terms of Lighthill’s 
quadrupoles, T,. However, an explicit dependence on vorticity as in (3.30) is often 
more convenient because the vortical regions of the flow are much more concentrated 
than the hydrodynamic region over which g, is non-zero. Moreover the development of 
the vorticity field can be described by simple kinematics. The velocity field is then given 
by equation (A 12). 

If we assume that the vorticity is so weak that products of it may be neglected, the 
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fluid velocity u’ in (3.30) may be replaced by V& the velocity due to the cylinder 
motion alone. After using (3.15) we obtain 

(ln(&r)+y)U+ 

(In (&u)+y)+i(n-2ku) 

The condition div o = 0 means that the three vorticity components are interdependent. 
This can be exploited to simplify the expressions for p,( -k, t). The details are given 
in Appendix C, where it is shown that (3.31) is equivalent to 

p,(-k,  t )  = -- 2x (w, U++ikuw+ U,) (3.32) 

for Ikl R, B 1 B Ikl a, where 

Equation (3.32) is in a particularly convenient form. It gives the wavenumber 
decomposition of the circumferentially averaged surface pressure directly in terms of 
the axial and azimuthal components of the instantaneous vorticity. 

Note that the integrand in (3.32) tends to zero as the vorticity approaches the 
cylinder, i.e. as (T +. a. Any contribution to the surface pressure from surface vorticity 
was neglected in the derivation of (3.26) and the following equations. We now see that, 
as vorticity approaches the cylinder, its contribution to the surface pressure becomes 
unimportant. Essentially this is because the image of the axial or azimuthal vorticity 
cancels its effect. 

Chase & Noiseux (1982) and Dhanak (1988) predicted that the circumferentially 
averaged surface pressure spectrum should be independent of wavenumber at low 
wavenumbers. We see from (3.32) that such a term depends on the axial components 
of vorticity. The more substantial azimuthal vorticity generates a contribution of order 
lkI2 a2 in the surface pressure spectrum. 

Equation (3.32) gives more information than simple scaling laws. It can be used to 
predict the development of flow noise during a cylinder manoeuvre. We illustrate its 
use in $4 by investigating two model problems. 

U, = V, cos $+ V, sin $ and U,, = - V, sin ++ V, cos 9. (3.33) 

4. A vortex ring near a cylinder 
In $ 3  an expression was derived for the surface pressures generated by an arbitrary 

distribution of vorticity, near a moving cylinder. In this section we demonstrate an 
application of that theory. 

A straight cylinder in axial motion has an established, substantial boundary layer. 
We are interested in the pressures generated as transverse motion of the cylinder causes 
the vorticity in this boundary layer to be shed. In seeking a qualitative description of 
this flow, we take a highly simplified model of an element of vorticity in the boundary 
layer. We model it by a vortex ring of strength yoyo, which initially lies in the plane 
x,  = 0, is circular with radius b and coaxial with the cylinder. The initial vorticity can be 
expressed in the form o(x, 0) = yo S(R - b) S(x,) e,, , where x,, R, and $o are cylindrical 
polar coordinates centred on the initial position of the vortex. e,, is the azimuthal unit 
tangent vector. At times r > 0, the vorticity is convected in a velocity field u(x, r )  and 
the ring deforms. 
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The initial polar angle $o is a convenient Lagrangian variable. Let us suppose that 
at time t the element of the ring which was initially at $o has moved to xu($o, t). Since, 
in an inviscid fluid, vorticity convects with the fluid particles 

The vorticity is parallel to the ring, that is parallel to the tangential direction ax,/a$,. 
lax,/a$.,l describes the length of a material line coinciding with the vortex line. Since 
the ratio between the local vorticity magnitude and the length of such a material line 
remains constant (Batchelor 1967, p. 275), we can write 

where x ~ ( $ ~ ,  t )  is to be determined from integration of (4.1), with the initial condition 
xul = 0, R = b and $ = $,. 

We will assume that the vorticity is so weak that any products of yo may be 
neglected. The neglect of any self-induction means that, although small, the vortex core 
size E is non-zero, and the vortex strength yo is sufficiently weak to ensure that 
(yo/b)  In (b/E) is small in comparison with the fluid velocity induced by the cylinder 
motion (Batchelor 1967, p. 523). Then the convection velocity u in (4.1) may be 
replaced by u, the fluid velocity due to potential flow around the cylinder, given in 
(2.27). 

The axial wavenumber decomposition of the circumferentially averaged surface 
pressure can be obtained by substituting for the vorticity in (3.32). Equation (3.32) 
shows that, as far as its influence on p,( - k, t )  is concerned, vorticity distributed over 
a small but finite core may be treated as concentrated provided eikly;, $ and 1 -az/u2 
do not vary appreciably over the core. For the vorticity distribution in (4.2) 

where (xhl, flu, $J are the local cylindrical polar coordinates of 

xL = xV($07 - U(7) d7' 

The first term on the right-hand side of (4.3) depends on axial vorticity and would also 
arise in the two-dimensional case of an axial line vortex near a straight cylinder. That 
two-dimensional problem can be solved in a straightforward way using complex 
variable theory, and provides a reassuring check on the algebra. 

We will consider two particular examples in some detail. The first investigates the 
effects of transverse motion of a straight cylinder on a vortex ring, while the second 
highlights the first-order effects of curvature of the cylinder axis. 

4.1. A straight cylinder 
Consider a cylinder of radius a with a uniform, but unsteady velocity U(t) whose axis 
is in the 1-direction. Then 

i = (1,0,0), p = 0 and x,(s, t )  = (s, 0,O) + U(7) d7. c 
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The fluid velocity induced by cylinder motion, described by (2.27), simplifies 
considerably and when substituted into (4.1) leads to 

and 

(4.4a) 

(4.4 b) 

(4.4 c) 

UT(f), the transverse speed of the cylinder, is at an angle a to the plane $, = 0. 
Integration of (4.4), from the initial conditions 

%I($O, 0) = 0, g,($.o, 0) = b and $,($o. 0) = $0, (4.5) 

determines the subsequent shape of the vortex. 
If the transverse cylinder motion is rectilinear we can, without loss of generality, take 

a = 0. The right-hand sides of (4.4b) and (4.44 clearly depend on the functional form 
of the cylinder velocity. However, this explicit dependence can be eliminated by 
introducing a new time-like variable T defined by 

T = U,(T) dr/a. 

T is the instantaneous transverse displacement of the cylinder, non-dimensionalized 
with respect to the cylinder radius. Rewriting (4.46, c) in terms of T for a = 0, we 
obtain 

1 

These two equations can be integrated numerically using a Runge-Kutta-Merson 
method, thus determining the shape of the vortex ring for an arbitrary velocity UT(t). 
Some results are shown in figure 3. 

Since there is no distortion of the vortex in the 1-direction, the constraints that the 
vortex moves with the fluid and that the fluid is incompressible mean that the area 
between the vortex ring and the cylinder remains constant, i.e. 

i r ( c r t - u 2 )  d$,, = x(b2-aZ). (4.7) 

As a check on the accuracy of the numerical integration, the integral in (4.7) was 
evaluated numerically at each time T and compared with n(b2-a2). 

It is possible to solve (4.6) analytically when (cr,,-a)/a is small. The details are given 
in Dowling (1993), where it is shown that 

flu($,, T )  - a = (b -a) e-2T + tan2(’u’2) + aO(cr,/a - 1)’. (4.8) 1 + e+ tan2 ($,,/2) 

This expression shows that, except near $, = x ,  cr,,($,,, T) rapidly approaches a as T 
tends to infinity. Near $, = x ,  tan ($,,/2) is large and (4.8) predicts that cr, - a grows 
exponentially. However, these results near $, = n have very limited applicability since 
the assumption that (cr,-a)/u is small is soon violated. This approximate solution is 
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FIGURE 3. The position of the vortex ring in the x, = 0 plane at various non-dimensional times, T, 

small-(a, - a)/a approximation (equation (4.8)). 
for (a) b = 1.01a, (b) b = l .lu, (c) b = 2a, (d) b = 5a. -, Numerical integration of (4.6); ..... ., 

compared with the numerical results for the shape of the vortex ring in figure 3. We see 
that for small (b-a) /a  it is a good approximation for most $,, except near #, = x, 
where it soon over-estimates the distortion. 

The vortex ring position can also be determined analytically for the two angles 
II., = 0 and n. For these angles (4.6) shows that a$,/aT = 0 and 

where the upper sign is for $v = 0 and the lower sign for $v = n. Integration of (4.9) 
gives 

= T a T .  
0; +a) (b - a) 

(4.10) 

The results for the vortex ring shape in figure 3 are in a moving reference frame centred 
on the cylinder. In this frame of reference there is an incoming flow from the right. It 
is apparent that the relative motion between the cylinder and the flow essentially causes 
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the vortex ring to be shed. Of course, impenetrable surfaces like the cylinder cannot cut 
through vorticity which moves with the fluid and, while most of the vorticity is shed, 
a small remnant of the vortex ring remains wrapped around the cylinder. Except when 
(b-a) /a  is small, the vortex ring is essentially shed from the cylinder by the non- 
dimensional time T = b/a.  This is not really surprising. Since T is the displacement of 
the cylinder non-dimensionalized with respect to a, at a time T = b/a the cylinder has 
just reached the initial vortex position. Hence we can conclude that transverse cylinder 
motion causes boundary-layer vorticity to be shed from a cylinder once the 
displacement of the axis of the cylinder exceeds the initial boundary-layer thickness. 
We will now calculate the pressures generated by this shedding process. 

Substituting 

qV = UT(t) cos $,, and xLl = -[ V,(r) d7, 
0 

from (3.33) and (4.4), into (4.3) leads to 

where 

P,(-k, 0 = - ikapyo 2x exp (-ik[ V,(T) dr) U,(t)F(T), 

F(T) = -r(:-?) cos $v d$.,. 
U V  

(4.11) 

(4.12) 

For small (uv-a)/a we have an analytical form for B ~ ( $ ~ ,  T) (see (4.8)). This may be 
integrated analytically to give 

(4.13) 
47t 
a 

F( T )  = - (b - a) tanh T, 

for small (b - a) /a  and moderate values of T. 
The vortex deformations plotted in figure 3 show that, once the cylinder has moved 

enough to distort the vortex significantly, uv is close to a over much of the ring. Let 
us suppose that 0; - a for $v in the ranges 0 to x - S  and n+8 to 2x .  These regions 
do not contribute to the integral F(T) and 

F( T )  N JIId - cos $, (2 - f) d$v. 
n-8 g7J 

(4.14) 

The integrand is zero at AT S. We also know the value of the integrand at $v = x .  It 
is nun( T ) / a  - a/a,( T), where gun( T) is the solution of (4.10). A crude approximation 
to F(T) can therefore be obtained by using Simpson's rule of integration to write 

(4.15) 

The value of S can be found by applying Simpson's rule to the constant-area result in 
(4.7) : 

(4.16) 

A combination of (4.15) and (4.16) leads to 

(4.17) 
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FIGURE 4. Evaluation of the function F(T) as defined in (4.12) for (a) b = 1.01a, (b) b = 1.k 
(c) b = 2a, ( d )  b = 5a. -, Numerical integration; . . . . . , , small-(cr,, -a ) /a  approximation 
(equation (4.13)); - - - - - -  , Simpson’s rule approximation (equation (4.17)). 

This approximate form can only be expected to have limited validity. It requires T to 
be large enough for a significant distortion of the vortex ring. On the other hand, for 
very large values of T, the ring becomes so highly distorted near @, = x that the 
integral in (4.12) is no longer well approximated by our crude application of Simpson’s 
rule. 

The results in figure 4 show that F(T) first increases linearly with T, reaches a 
maximum and then decays. For small (b-a)/a,  the initial rise is well described by 
(4.13). In all cases the decay is reasonably well described by the Simpson’s rule 
approximation in (4.17). 

We have demonstrated that F(T) is proportional to T for small T, and this may be 
used to infer the high-frequency asymptotic form of the pressure spectrum. For 
example, if q(t) is constant, the Fourier transform of (4.11) leads to 

b,( -k,  o) = ikupydw + kU,)/2x, where A w )  = 1: U,(t) F( T) e-i”t dt. (4.18) 

The form of UT(t) as t + 0 will affect the high-frequency asymptotic form offlo). For 
example, suppose that the transverse motion is impulsive, so that U, is a non-zero, 
positive constant for t > 0. Then T is proportional to t and U,(t) F(T) a3 t as t +. O+. 
Abel’s theorem then gives Ao) cc oA2 as +a. If, on the other hand, the cylinder 
motion starts with a uniform acceleration, then U,(t) and Tare proportional to t and 
t2 respectively for small, positive t. Hence U,(t)F(T) cc t3 as t +  0’ and it follows from 
Abel’s theorem that A w )  cc 0-4 as (01 -too. 
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0, results of numerical integration; ------ , curve T,,, = b/a.  

FIGURE 6. The variation of F,,,, the maximum value of F(T), with bla: 0,  results of numerical 
integration; - -  - - --, Simpson’s rule approximation (equation (4.19)). 

More information about the effect of the cylinder’s manoeuvre on flow noise can be 
obtained by summarizing the information about the time history of F(T) displayed in 
figure 4. These graphs suggest that the maximum values of F, F,,, say, occur for values 
of Tnear b /a .  This is confirmed in figure 5 ,  which is a plot of T,,,, the value of T at 
which F has its maximum for an initial vortex radius, against b/a.  We see that (except 
for very small (b - a)/a) T,,, does indeed lie close to b/a.  This is not really surprising. 
Since T is the displacement of the cylinder non-dimensionalized with respect to a, at 
a time T = b /a  the cylinder has just reached the initial vortex position. 

By the time T =  b/a,  the vortex has been significantly distorted and we can use 
(4.17), our Simpson’s rule estimate of F(b/a), to obtain an approximation to F,,,. This 
procedure gives 

(4.19) 

where crvx(b/a) is given by evaluating (4.10) for T = b/a.  
This estimate of F,,, is compared with the maximum found from numerical 

calculations in figure 6. The approximation works remarkably well. We see that a 
modest increase in b/a leads to a 100-fold increase in F,,, and hence in the surface 
pressures. This variation is well described by the approximate form. 
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FIGURE 7. The cylinder and vortex ring at time t = 0. 

In summary, the wavenumber decomposition of circumferentially averaged surface 
pressure is described by (4.1 1). The function F(T) in this expression has been evaluated 
both approximately and numerically. These results show that F attains its maximum 
value at a time when the cylinder's manoeuvre takes it to the initial position of the 
vortex ring. The maximum value of P is  strongly dependent on the initial radius of the 
vortex ring and this variation is well predicted by (4.19). 

4.2. A curved cylinder 
As an introductory example into the effects of curvature of the cylinder axis, consider 
a cylinder, whose axis forms part of a circular arc, in uniform motion. We investigate 
the particular case where 

xc(s, t) = R,(sin (s/Rc), cos (s/R,), 0) + U(7) d7 and U = (U,(t), 0,O). 

At t = 0, the vortex ring will be taken to be coaxial with the cylinder at s = 0 and of 
radius b. The geometry is illustrated in figure 7. We can anticipate the effects of cylinder 
motion on the vortex ring. Since vorticity moves with the fluid, the cylinder cannot cut 
through the ring. Hence, at times t > 0, as the curved cylinder moves through the ring, 
it must deflect the ring elements near $o = x in the -xx,-direction and the ring is 
stretched. 

A quantitative determination of ring distortion follows from an integration of (4.1). 
It is convenient to introduce variables S,($,,t) and XV($,,t) to describe the ring 
position at time t. Su(+,,, t) and Xu($,, t) are related to xu($,, t) in the way indicated 
in (2.7) and (2.8). We expand Xu($,,, t), the perpendicular from the cylinder axis to 

t), in polar coordinates uU($,, t) and $u($o, t). Substitution for the velocity field 
from (2.27) into (4.1) leads, after extensive but straightforward algebra, to 

s: 

(4.20a) 

(4.20b) 

(4.20 c) 
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The details of the algebraic manipulation are given in Dowling (1993). The right-hand 
sides of (4.20) clearly depend on the functional form of the axial cylinder velocity Y(t). 
However, this explicit dependence can be eliminated by introducing a new time-like 
variable 

q = - U,(T) dT/a. 1 
We have included a minus sign in the definition of because we anticipate a motion 
in which U,( t )  is negative. is the instantaneous displacement of the cylinder in the 
negative x,-direction, non-dimensionalized with respect to the cylinder radius. 
Rewriting (4.20) in terms of T,, we obtain 

(4.21 a)  

(4.21 b) 

(4.21 c) 

13 F L M  278 



382 A .  P. Dowling 

I . . . . , . . . .  I . .  

(4 
4 a Y  ' ' ' ' I ' ' ' ' ' ' -- 

4a 

2a 

0 

-2a 

I ' " ' / " " I ' " '  -2a- - -4a --- , , -- T-r ,-r rTT.-7-t 

The initial conditions are Sv($o,O) = 0, U , ( $ ~ ~ O )  = b and $v($o,O) = $o. It is a 
straightforward matter to integrate (4.21) numerically from these initial conditions to 
determine the subsequent shape of the vortex ring. Some results are shown in figures 
8 and 9. 

Since Q / U ~ - U , / U  is negative, (4.21 a) shows that S, increases more rapidly for 
negative cos $, than for positive cos $,. This means that elements of the vortex ring 
on the inside of the curve of the cylinder axis travel more rapidly along the cylinder 
than those on the outside and the ring tilts, as shown in figure 8. As the vortex ring is 
swept along the curved cylinder, the element of the ring near $o = 0 tends to remain 
at approximately the same x,-position and the ring is stretched. 

Figure 9 shows the distortion of the vortex ring perpendicular to the cylinder axis. 
The trends are similar to those induced by transverse motion of a straight cylinder in 
figure 3 and vorticity is essentially shed from the cylinder. We can explain these 
similarities directly from the equations of vortex motion. 

Throughout the time that (S,/RC)' is small, (4.21 a) can be integrated to show that 
S, = aT, + O(ac), where E is order a/R,. Hence, to lowest order in E ,  equations (4.21 b) 
and (4.21 c) become 

(4 .22~)  

(4.22 b) 
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Equation (4.22) is identical to (4.6) provided we make the substitution T = aT,2/2Rc 
and replace @v by x-@v. The integration of (4.6) showed that the vortex ring is shed 
from the straight cylinder by the non-dimensional time T = b/a.  Therefore, by 
analogy, we can expect the vorticity to be shed from the curved cylinder by q = 
(2bRc)1/2//a, and this is confirmed by the plots of vortex ring geometry in figure 9. 

The results in figures 3, 8 and 9 can be combined into the statement that transverse 
displacement of the cylinder axis causes distortion of boundary-layer vorticity . The 
vorticity is essentially shed from the cylinder once the cylinder’s transverse 
displacement exceeds the boundary-layer thickness. The effect on the vorticity is similar 
however the cylinder’s transverse displacement is produced. 

The vortex ring travels an axial distance of order (2bRC)’/’ before it is shed from the 
cylinder. It is therefore important to retain terms of order a/R,  in (4.21), when 
describing the convection of the vorticity. Small errors in velocity lead to significant 
errors in the position of the vorticity after it has been convected this distance. However, 
once the instantaneous position of the vorticity is known, surface pressures induced on 
the cylinder near the vorticity can be deduced by treating the cylinder as locally 
straight, with an error of only order e in comparison with unity. Before we can use the 
result in (4.3) for the wavenumber decomposition of the circumferentially averaged 
surface pressure we must introduce local cylindrical polar coordinates aligned with the 
cylinder axis near the vorticity. 

At a non-dimensional time T,, the cylinder has moved a distance aT, in the negative 
l-direction. The vortex ring is then near arclength So(T,) of the cylinder where from 
(4.21 a) 

This integrates to give 

(4.23) 

(4.24) 

Write xl = xu + aT, el - xc(So(T,), TJ in local cylindrical polar coordinates : x: = 
(Sv- So(T,), gV, @.,). In this coordinate system UGv = V, sin(So/R,) cos $v and U+, = 
- V, sin (So/Rc) sin @v. Substitution into (4.3) leads to 

For small k(S,-S,(T,)), the exponential may be expanded to give 

where 
A(T,) = sin ( S o / R c ) [ r $  sin @ v ( - - T )  1 a2 d@,, 

r v  g v  
(4.27) 

p,( - k,  T,) described by (4.26) is a local Fourier transform obtained by an integration 
over S centred on So(TJ: 

13-2 
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. F  

( p  -pm) (x, q) eik(S-So(Tl)) d0 dS  = p,( - k, T,) e-ikSo(Tl), (4.29) 
2.11: 

where p,( - k, q) is the Fourier transform of the circumferentially averaged pressure 
with respect to arclength S. From a combination of (4.26) and (4.29) 

P,(-kk, K )  = P Y O q e i k S  2.11: o( T 1) [A( TJ + ikaB( T,)]. (4.30) 

The functions A(TJ and B(T,) are plotted in figure 10 for different values of b/a and 
RJa.  It is evident from the figure that A is very small in comparison with IBI. This is 
partly because S, varies only slowly with $o,. and partly because the maximum values 
of laS,/a$,l occur where sin $, is small. For similar reasons the first term in the integral 
defining B(T,) is much smaller than the second. 

We can deduce from the relative magnitudes of A(T,) and B(T,) shown in figure 10 
that, over most of the range (kl R, B 1, the main contribution to the surface pressure 
decomposition in (4.30) is 

The expression for p,( -k, t )  described in (4.31) for the curved cylinder is similar to 
that for the straight cylinder in (4.1 1). Once again the cross-power spectral density for 
the surface pressure is predicted to be proportional to k2. The similarity between the 
two forms can be highlighted by introducing new variables. 

We will use I as an independent variable where, aZ(T,) = R,- R, cos (So(q) /Rc) ,  is 
the transverse displacement of the cylinder axis at So(T,). With the new dependent 
variable, 4(1) = B(T,)/sin (So/&), equation (4.31) leads to 

P,(-kk, t )  = - ikapro exp (ikSo(q)) q ( t )  sin (s,/R,) 4 ~ ) .  (4.32) 

We note that in this example Y(t) sin (SJR,) is the cylinder velocity transverse to its 
local axis. U,(t) sin (So/&) in (4.32) is therefore directly comparable with the variable 
UT(t) in (4.11). 

F,(Z) is plotted in figure 1 1  and is found to have a form virtually independent of the 
radius of curvature of the cylinder centreline. The peak pressure fluctuations are 
generated when I is approximately equal to b/a.  This is when the transverse cylinder 
displacement is equal to the initial radius of the vortex ring, a result that is reminiscent 
of that for the straight cylinder (see figure 5). The function - F(T) for the straight 
cylinder, which was plotted in figure 4, is also shown on figure 11 for comparison. It 
is clear that -F(T)  is a good approximation to 4(/)  for different values of R, and b. 
Therefore the results in g4.1 describing the variation of F(T) can also be applied to 

In summary, we have considered two particular examples in some detail. In the first, 
the transverse cylinder displacement is produced by transverse motion of a straight 
cylinder. In the second, the cylinder axis near the vortex ring is displaced laterally by 
the longitudinal velocity of a cylinder with a curved axis. In both cases the wavenumber 
decomposition of the circumferentially averaged pressure spectrum is proportional to 
k2. Moreover the magnitude of the pressure is proportional to the product of the 
transverse cylinder velocity at the position of the vortex and a function F. The function 
F depends on the transverse displacement of the cylinder, and attains its maximum at 
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a time when the cylinder's manoeuvre takes it to the initial position of the vortex ring. 
The maximum value of F is strongly dependent on the initial radius of the vortex ring 
in the way described by (4.19) and illustrated in figure 6. 

5. Conclusions 
The velocity field due to a moving cylinder has been decomposed into an irrotational 

component and an additional term due to vorticity. The irrotational flow produced by 
an arbitrary unsteady motion of a cylinder with a slightly curved axis was determined 
in $2 (see (2.27)). The effect of vorticity was considered in $3, where a vector Green 
function was used to derive a general representation for the velocity potential outside 
the regions of vorticity, in terms of a weighted integral over the vorticity distribution. 
Having determined an expression for the velocity potential it is straightforward to 
calculate other flow parameters, like velocity and pressure. We use it to derive an 
expression for p,(k, t ) ,  the axial wavenumber decomposition of the circumferentially 
averaged surface pressure induced by an arbitrary distribution of vorticity near the 
moving cylinder. The general form is given in (3.30). This simplifies to the expression in 
(3.32) when the vorticity is weak and convects with the irrotational fluid velocity 
induced by the cylinder motion. Equation (3.32) describes the wavenumber 
decomposition of the circumferentially averaged pressure in terms of a weighted 
volume integral over the instantaneous vorticity field. Two things are striking about its 
form. First, it shows that the pressure spectrum is proportional to (ku)' in a boundary 
layer in which the vorticity is primarily azimuthal, but that there is an additional term 
independent of wavenumber when there is significant axial vorticity. Secondly, it 
demonstrates that as parts of the vorticity approach the cylinder they do not contribute 

An application of this representation theorem is described in $4, where the unsteady 
pressures generated when a cylinder with an established boundary layer undergoes 
lateral displacement were investigated. The model of an element of boundary-layer 
vorticity was highly simplified. Nevertheless, our results were found not to depend on 
the details of the lateral displacement which leads us to believe that they have wider 
applicability. These results suggest that transverse cylinder motion causes boundary- 
layer vorticity to be shed from a cylinder once the displacement of the axis of the 
cylinder exceeds the boundary-layer thickness. Hence along the flexible cylinder the 
boundary layer will repeatedly grow and then be shed. 

The circumferentially averaged pressure spectrum generated by the shedding of a 
vortex ring was found to be proportional to the square of the axial wavenumber. The 
magnitude of the pressure depends on the product of the transverse velocity of the 
cylinder with a function F (see (4.11)). F is a function of the transverse displacement 
of the cylinder, and attains its maximum at a time when the cylinder's manoeuvre takes 
it to the initial position of the vortex ring. The maximum value of F is strongly 
dependent on the initial radius of the vortex ring in the way described by (4.19) and 
illustrated in figure 6. F,,, increases significantly as the initial radius of the ring 
increases. 

A cylindrically symmetric boundary layer may be considered as a superposition of 
vortex rings, whose strengths are a function of their radius and axial position. Then, 
for a specified initial distribution of vorticity and transverse velocity, (4.11) and figures 
4 and 6 can be used to infer the form of the surface pressure spectrum induced as this 
established boundary layer is shed by the lateral motion of the cylinder. In particular, 
it is evident from figure 4 that the surface pressures due to this vortex shedding are not 

to p , k  0. 
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significant once the lateral displacement of the cylinder exceeds about twice the initial 
boundary-layer thickness. 

This work has been carried out with the support of the Defence Research Agency 
and Topexpress Ltd. 

Appendix A. The velocity field induced by vorticity near a moving cylinder 
The velocity field satisfies 

curl u = w, 

with n.Vu = n -  U on the cylinder. 

In free space (Batchelor 1967, p. 87), the solution to (A 1) is 

This velocity field is a particular integral of (A 1). In order to find the solution that 
satisfies the boundary condition (A 2) we add on an irrotational velocity field and write 

u(x, t )  = uAx, t) + V(bC. (A 4) 
The continuity equation then leads to 

and it follows from the boundary condition (A 2) that 

v2q5c = 0, 

For a curved cylinder in arbitrary motion the solution to Laplace’s equation which 
satisfies the boundary condition n - Vq5 = n U is given correct to order c by (2.26). The 
additional contribution to q5c to account for the effect of the vorticity in the boundary 
condition (A 6) could be calculated easily numerically by, for example, a panel method. 
This determines the instantaneous velocity field in terms of the cylinder velocity and 
three-dimensional vorticity. Equation (3.6) could then be integrated with respect to 
time to find the development of the vorticity field. 

The curvature of the cylinder axis leads to small terms of order E in the fluid velocity. 
Over a large time interval, the integrated effect of this small velocity change may be 
significant. Hence the development of the vorticity field over an appreciable time 
interval may be influenced by the curvature of the cylinder axis. However, in (3.29) and 
(3.30) the instantaneous velocity field is only required to zeroth order in E. Then the 
cylinder may be considered as straight with a uniform velocity U(t)  and an analytical 
solution for u can be determined. 

It is convenient to use a reference frame which moves with the cylinder, 

L L x’ = x- U(T) dt, y’ = y-  V(T) dt and u’ = u- U(t). 

Introduce cylindrical polar coordinates x’ = (x i ,  R, O), y’ = ( y i ,  u, @), the 1-direction 
being taken parallel to the local cylinder axis. 

Then u’ = of+Vq56 and it follows from (A 2) that 
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In cylindrical polar coordinates (x‘-y’)/lx‘ -y‘I3 can be expanded in harmonics to 
show that for x on the cylinder 

for a < (r, (A 8) 

where K = Ikl. I,(z) and K,(z) are modified Bessel functions and a dot denotes 
differentiation with respect to the argument. The boundary condition (A 7) can 
therefore be rewritten as 

The solution to V2q5L = 0 that satisfies the boundary condition (A 9) and tends to 
- U-x’ at infinity is 

m 

dk- U-x’-(V, cos 8+ U, sin 8)a2/R. 

(A 11) 
The velocity field then follows : 

-U+(O,U,cos8+U,sinO, U , s i n 8 - U , c o s 8 ) a 2 / R 2 + 0 ( ~ ) .  (A 12) 

A,@) is given by (A 10) as an integral over the instantaneous vorticity field. Equation 
(A 12) is therefore a representation of the velocity field induced by an arbitrary 
distribution of vorticity near a moving cylinder. The first term on the right-hand side 
describes the velocity field that would be generated by the vorticity in unbounded 
space, while the second term accounts for the scattering effect of the cylinder. The 
remaining terms are those induced directly by the cylinder velocity. 

Appendix B. Evaluation of the vector Green function 
G(y’, I x’) is the solution of Laplace’s equation with a point source at x’ that satisfies 

n.VG = 0 on the surface of the cylinder (see (3.16)). It is convenient to expand x’ = 
(xi, R, O), y’ = (y i ,  u, @) in cylindrical polar coordinates, with the 1-direction being 
taken parallel to the local cylinder axis. The method of solution for G(y’)x’) is 
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standard and is described, for example, in Morse & Feshbach (1953, chapter 10). For 
R < a, this leads to 

where 

m 

G(y' I x') = [C(n, K, x) K,(KcT) eikv;+in* dk for R < a, (B 1) 
n--m J 

and K = Ikl. 
The vector Green function G(y ' (  x') is defined by (3.18): 

curl G = grad G. (B 3) 

This equation only determines G to within the addition of any irrotational function 
and we can use this arbitrariness to choose the radial component of G to be zero. Then, 
after substitution for G from (B l), equation (B 3) simplifies to 

00 

(B 4b) 
a 
- (aGJ = a C(n, k ,  x) ikK,(~a)  eikUi+in* dk. 
aa n--w 

After integration, we obtain 

* (B 5)  
* Kn(z) dz 

Z n--m 

Substitution for C(n, k, x) from (B 2) leads to 

(B 6) 
where 

a result that is used in (3.23). 

Appendix C. Simplification of the wavenumber decomposition of the 
circumferentially averaged pressure 

The condition 

implies a relationship between the three components of vorticity, which may be 
exploited to simplify the expression for p,( -k ,  t )  in (3.31). 

We begin by introducing a function S(y, k )  defined by 
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Integration shows that 

where so(yi, $) may be chosen arbitrarily. 
The integral describing p, ( -k ,  t )  in (3.31) contains a term 

After integration by parts and use of (C 1) we obtain 

after a further integration by parts. 
When  so^;, $) is chosen to be nU+/k and (C 6) is substituted into (3.31), the 

expression for p,(-k,  t )  simplifies to the form in (3.32), if terms of order ( k ~ ) ~  are 
neglected in comparison with unity. 
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